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Abstract—Convolutional sparse representations differ from the
standard form of sparse representations in their composition
from coefficient maps convolved with dictionary filters instead
of linear combinations of dictionary vectors. When applied to
images, the standard form is usually independently computed
over a set of overlapping image patches. The advantage of the
convolutional form is that it provides a single-valued repre-
sentation optimized over an entire signal, but this comes at a
substantial computational cost. A recent algorithm for sparse
coding via a convolutional form of Basis Pursuit DeNoising,
however, has substantially reduced the computational cost of
computing these representations. The present paper extends this
algorithm to multi-channel signals such as color images, which
has not previously been reported in the literature.

Index Terms—Sparse Coding, Dictionary Learning, Convolu-
tional Sparse Representation, Multi-channel

I. INTRODUCTION

Sparse representations [1], [2] are very widely used in im-
age processing problems. When the dictionary is analytically
defined and has a fast transform it is feasible to compute the
representation for an entire image, but when the dictionary
is learned from data, and therefore represented by an explicit
matrix, the dictionary learning and sparse coding problems
become intractable for images of reasonable size, the standard
approach being to independently compute the representations
on overlapping image blocks. Convolutional sparse repre-
sentations [3] or the equivalent translation-invariant sparse
representations (see [4, Sec. II.B]), which are far less well
known than the standard form of sparse representation, offer
an alternative structure that can be used to decompose an entire
signal or image, albeit at considerable computational cost.

As is the case for standard sparse coding, there are various
formulations of the sparse coding problem, the two main fam-
ilies of approaches consisting of heuristic/greedy algorithms
directly targeting sparsity as an optimization criterion, and
convex optimization methods for solving the `1 relaxation of
the sparsity. The present paper considers the convolutional
variant of Basis Pursuit DeNoising (BPDN) [5], referred
to here as Convolutional BPDN (CBPDN), an optimization
problem associated with the latter family of solution methods,
and defined as

arg min
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2

+ λ
∑
m

‖xm‖1 , (1)
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where {dm} is a set of M dictionary filters, ∗ denotes
convolution, and {xm} is a set of coefficient maps1. The com-
putational expense of this optimization problem has limited the
application of this representation to very small images, but re-
cent Alternating Direction Method of Multipliers (ADMM) [6]
algorithms have substantially reduced the computational cost
of earlier methods [7], [4], making this a more viable method
for signal and image inverse problems.

The present paper extends these algorithms to the decom-
position of multi-channel signals, with a particular focus on
color images. To the best of the author’s knowledge, there is
no significant prior work on the use of convolutional sparse
representations for color images or on the development of
efficient algorithms for solving the multi-channel CBPDN
problem2. In addition to independent sparse coding of each
channel, which can be achieved using existing algorithms,
we consider two different methods of exploiting inter-channel
statistical dependencies.

II. SINGLE-CHANNEL DICTIONARY WITH JOINT SPARSITY

If each channel is represented using the same single-channel
dictionary, then a reasonable assumption – at least in the case
of RGB natural images – is that the same dictionary filters will
tend to be active (i.e. non-zero) at the same spatial locations,
but with different values. This model can be exploited by
including an `2,1 norm term to penalize the solution in favor
of joint sparsity, as in the problem

arg min
{xc,m}

1

2

∑
c

∥∥∥∑
m

dm ∗ xc,m − sc

∥∥∥2
2

+ λ
∑
c

∑
m

‖xc,m‖1

+ µ ‖{xc,m}‖2,1 , (2)

where sc denotes channel c of the C channels of signal s, and
the `2,1 norm takes an `2 norm along the channel index c, and
and `1 norm over the spatial indices and filter index m.

Introducing auxiliary variables {yc,m} and dual variables
{uc,m}, this problem can be solved via the ADMM itera-

1For notational simplicity s and each of the {xm} are considered to be N
dimensional vectors, where N is the number of pixels in image s.

2Zeiler et al. [3] proposed an image representation that allows for multi-
channel signals, without any specific discussion or experimental results
addressing this aspect. Barthélemy et al. [8] considered multi-channel signals
using algorithms that fall within the family of heuristic/greedy methods, and
did not address the representation of images.



tions

{xc,m}(j+1) = arg min
{xc,m}

1

2

∑
c

∥∥∥∑
m

dm ∗ xc,m − sc

∥∥∥2
2
+

ρ

2

∑
c

∑
m

∥∥∥xc,m − y(j)
c,m + u(j)

c,m

∥∥∥2
2

(3)

{yc,m}(j+1) = arg min
{yc,m}

λ
∑
c

∑
m

‖yc,m‖1+µ
∥∥∥{x(j+1)

c,m }
∥∥∥
2,1

ρ

2

∑
c

∑
m

∥∥∥x(j+1)
c,m − yc,m + u(j)

c,m

∥∥∥2
2

(4)

u(j+1)
c,m = u(j)

c,m + x(j+1)
c,m − y(j+1)

c,m . (5)

The primary computational cost is in solving Eq. (3). Since
this problem is decoupled along channel index c, each channel
can be solved independently. The problem for a single channel
can be expressed in the form

arg min
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2

+
ρ

2

∑
m

‖xm − zm‖22 , (6)

which can be solved efficiently by transforming to the DFT
(Discrete Fourier Transform) domain and using the Sherman-
Morrison formula to solve the resulting linear system, which
has a system matrix consisting of the sum of a rank-one and
a diagonal term [7], [4].

The solution to subproblem Eq. (4) is given by the proximal
map of the sum of `1 and `2,1 norms [9], which can be
computed as

y(j+1)
c,m = S1,2,λ/ρ,µ/ρ

(
x(j+1)
c,m + u(j)

c,m

)
, (7)

where
S1,γ(u) = sign(u)�max(0, |u| − γ) (8)

S2,γ(u) =
u

‖u‖2
max(0, ‖u‖2 − γ) (9)

S1,2,α,β(u) = S2,β(S1,α(u)) . (10)

III. MULTI-CHANNEL DICTIONARY

An alternative to separately representing each channel to-
gether with a joint sparsity term is to introduce a multi-channel
dictionary with respect to which the channels share a single
representation. In this case we need both a new sparse coding
algorithm and a new dictionary learning algorithm.

A. Sparse Coding
If we denote denote channel c of dictionary filter m as dc,m,

then the multi-channel convolutional sparse coding problem
can be expressed as

arg min
{xm}

1

2

∑
c

∥∥∥∑
m

dc,m ∗ xm − sc

∥∥∥2
2

+ λ
∑
m

‖xm‖1 , (11)

which can be solved via the ADMM iterations

{xm}(j+1) = arg min
{xm}

1

2

∑
c

∥∥∥∑
m

dc,m ∗ xm − sc

∥∥∥2
2
+

ρ

2

∑
m

∥∥∥xm − y(j)
m + u(j)

m

∥∥∥2
2

(12)

{ym}(j+1) = arg min
{ym}

λ
∑
m

‖ym‖1 +

ρ

2

∑
m

∥∥∥x(j+1)
m − ym + u(j)

m

∥∥∥2
2

(13)

u(j+1)
m = u(j)

m + x(j+1)
m − y(j+1)

m . (14)

Sub-problem Eq. (13) is solved via shrinkage/soft thresholding

y(j+1)
m = S1,λ/ρ

(
x(j+1)
m + u(j)

m

)
. (15)

The only computationally expensive step is Eq. (12), which
can be written in slightly simpler form as

arg min
{xm}

1

2

∑
c

∥∥∥∑
m

dc,m ∗xm−sc

∥∥∥2
2

+
ρ

2

∑
m

‖xm − zm‖22 . (16)

The DFT convolution theorem implies that Eq. (16) is
equivalent to the frequency domain problem

arg min
{x̂m}

1

2

∑
c

∥∥∥∑
m

D̂c,mx̂m − ŝc

∥∥∥2
2

+
ρ

2

∑
m

‖x̂m − ẑm‖22 , (17)

where each Dc,m is a linear operator such that Dc,mxm =
dc,m ∗ xm, and the DFT domain variables corresponding to
Dc,m, xm, sc, and zm are denoted by D̂c,m, x̂m, ŝc, and ẑm
respectively. Defining

D̂c =
(
D̂c,0 D̂c,1 . . .

)
, (18)

this can be expressed as

arg min
x̂

1

2

∑
c

∥∥D̂cx̂− ŝc
∥∥2
2

+
ρ

2
‖x̂− ẑ‖22 (19)

with solution(∑
c

D̂H
c D̂c + ρI

)
x̂ =

∑
c

D̂H
c ŝc + ρẑ . (20)

In the single-channel case this involves solving a linear
system with system matrix consisting of rank-one and di-
agonal components, which can be solved very efficiently
using the Sherman-Morrison formula [4]. Direct application
of the Sherman-Morrison formula in the multi-channel case
is not possible since the system matrix consists of a sum
of C rank-one components and a diagonal component. It is
possible, however, to apply the Sherman-Morrison formula in
sequence to ρI + D̂H

0 D̂0, then (ρI + D̂H
0 D̂0) + D̂H

1 D̂1 and
so on. Such an algorithm [4, App. D] was developed for the
single-channel dictionary update problem, which has the same
structure as Eq. (20). The computational cost is quadratic in
C, but the performance evaluation of this algorithm applied to
the single-channel dictionary update [4, Sec. V.C] implies that
for a small number of channels, such as in an RGB image, it
is far more efficient than applying standard direct (Gaussian
Elimination) or iterative (Conjugate Gradient) methods [4].

B. Dictionary Learning

The dictionary learning problem corresponding to Eq. (11)
is

arg min
{dc,m},{xk,m}

1

2

∑
k

∑
c

∥∥∥∑
m

dc,m ∗ xk,m−sk,c
∥∥∥2
2

+ λ
∑
k

∑
m

‖xk,m‖1 . (21)

Taking the same general approach as for the single-channel
case [4, Sec. V], the dictionary update step can be posed as

arg min
{dc,m}

1

2

∑
k

∑
c

∥∥∥∑
m

xk,m ∗ dc,m − sk,c

∥∥∥2
2

s. t. dc,m ∈ CP ∀c,m , (22)



where the dc,m have the same spatial support as the xk,m, P
is a zero-padding operator, and

CP = {x ∈ RN : (I − PPT )x = 0} . (23)

Rewriting with an auxiliary variable in a form suitable for
ADMM gives

arg min
{dc,m}

1

2

∑
k

∑
c

∥∥∥∑
m

xk,m ∗ dc,m − sk,c

∥∥∥2
2
+∑

c

∑
m

ιCPN (gc,m) s.t. dc,m = gc,m ∀c,m . (24)

This problem can be solved via an ADMM algorithm

{dc,m}(j+1) = arg min
{dc,m}

1

2

∑
k

∑
c

∥∥∥∑
m

xk,m∗dc,m−sk,c
∥∥∥2
2

+
σ

2

∑
c

∑
m

∥∥∥dc,m − g(j)
c,m + h(j)

c,m

∥∥∥2
2

(25)

{gc,m}(j+1) = arg min
{gc,m}

∑
c

∑
m

ιCPN (gc,m)+

σ

2

∑
c

∑
m

∥∥∥d(j+1)
c,m − gc,m + h(j)

c,m

∥∥∥2
2

(26)

h(j+1)
c,m = h(j)

c,m + d(j+1)
c,m − g(j+1)

c,m . (27)

The {gc,m} update is of the form

arg min
x

1

2
‖x− y‖22 +ιCPN(x) = proxιCPN

(y)

=PPTy/
∥∥PPTy∥∥

2
. (28)

The computationally expensive component is the {dc,m} up-
date, which has the form

arg min
{dc,m}

1

2

∑
k

∑
c

∥∥∥∑
m

xk,m ∗ dc,m − sk,c

∥∥∥2
2

+
σ

2

∑
m

∑
c

‖dc,m − zc,m‖22 , (29)

and which can be expressed in the DFT domain as

arg min
{d̂c,m}

1

2

∑
k

∑
c

∥∥∥∑
m

X̂k,md̂c,m − ŝk,c

∥∥∥2
2

+
σ

2

∑
m

∑
c

∥∥∥d̂c,m − ẑc,m

∥∥∥2
2
, (30)

where X̂k,m = diag(x̂k,m).
Defining X̂k =

(
X̂k,0 X̂k,1 . . .

)
and

d̂c =

 d̂c,0
d̂c,1

...

 ẑc =

 ẑc,1
ẑc,1

...

 , (31)

this problem can be expressed as

arg min
{d̂c}

1

2

∑
k

∑
c

∥∥X̂kd̂c − ŝk,c
∥∥2
2

+
σ

2

∑
c

∥∥d̂c − ẑc
∥∥2
2
. (32)

Further defining

Ξ̂k =

 X̂k 0 · · ·
0 X̂k · · ·
...

...
. . .

 d̂ =

 d̂0

d̂1

...


ẑ =

 ẑ0
ẑ1
...

 ŝk =

 ŝk,0
ŝk,1

...

 , (33)

allows simplification to the form

arg min
d̂

1

2

∑
k

∥∥∥Ξ̂kd̂− ŝk

∥∥∥2
2

+
σ

2

∥∥∥d̂− ẑ
∥∥∥2
2

(34)

with solution given by(∑
k

Ξ̂Hk Ξ̂k + σI
)
d̂ =

∑
k

Ξ̂Hk ŝ + σẑ . (35)

This problem can again be solved via the iterated Sherman-
Morrison algorithm [4, App. D]; unlike sparse coding, the
change from the single to the multiple channel dictionary
update increases the sizes of the arrays to be processed, but
does not change the fundamental problem structure.

IV. RESULTS

We compare the performance of three different models on
an “inpainting” problem3 posed by a color image with samples
zeroed in randomly selected (but known) channels and spatial
locations so that only 1/3 of of the samples remain. The
reference and corrupted images are displayed in Fig. 1(a)
and Fig. 1(b) respectively.

(a) Reference (b) Corrupted

Fig. 1. Ground truth and corrupted test images.

The natural solution of such an “inpainting” problem via
convolutional sparse representations (shown in the single chan-
nel case for the sake of clarity) is ŝ =

∑
m dm ∗ x̂m, where

{x̂m} is the minimizer of

arg min
{xm}

1

2

∥∥∥W(∑
m

dm ∗ xm − s
)∥∥∥2

2
+ λ

∑
m

‖xm‖1 , (36)

and W is a mask taking on values zero and one at unknown
and known pixel locations respectively. Direct application of
the efficient DFT domain solution to this problem is not
possible since spatial mask W is not diagonalized by the
DFT. There is, however, a computationally cheap alternative
approach [10, Sec. 4] to integrating the mask W into the
optimization problem: introduce an additional impulse filter
into the dictionary and apply a spatial weighting to the `1

norm of this filter so that there is no penalty for employing it

3The quotes are intended to differentiate this problem from the true inpaint-
ing problem of estimating relatively large contiguous regions of corrupted
pixels. While this randomly located corruption problem is not as difficult,
and arguably not as useful in actual applications, it remains a very convenient
problem on which to test and compare image models.
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Fig. 2. Inpainting performance comparison. The joint sparse model parameter
µ was selected by searching for best performance over a range of values.

in spatial locations where the image has been corrupted, and a
large penalty in locations where pixel values are known. Since
the impulses are completely unpenalized at spatial locations
that are desired to be masked out of the data fidelity term,
they adapt to zero out any error at these locations, achieving
the same effect as the weighting of the data fidelity term. The
reconstructed image is obtained by summing over all of the
dm ∗ x̂m except for those corresponding to an impulse filter.

Three different convolutional sparse models were used to
solve the “inpainting” problem: completely independent chan-
nel representation, separate channel representation linked by
a joint sparsity term, and a combined representation with a
multi-channel dictionary. The same basic approach to solving
the problem was adopted in each case: augment the dictionary
with impulse filter(s) to represent the corruptions, as described
above, and weight the `1 (and `2,1, where appropriate) norm so
that there is no penalty on these impulse filters corresponding
to the locations/channels of the corrupted pixels. A learned
dictionary consisting of 144 filters of size 12×12 was used for
both methods requiring a single-channel dictionary, and the 3-
channel dictionary, consisting of 144 filters of size 12×12×3,
was learned from a set of color images, using a three channel
replication of the single channel dictionary described above for
initialization. In the single-channel dictionary cases a single
impulse filter was appended to the learned dictionary, and in
the multi-channel dictionary case an impulse filter for each
channel was appended to the learned dictionary. Since con-
volutional sparse representations typically can not effectively
represent the low-frequency image components, an estimate
of this component was computed using Total Variation (TV)
inpainting [11], with regularization parameter set to 0.07 in
all three cases.

The average times per iteration over 100 iterations of
the independent, the joint sparse, and the color dictionary
algorithms were 18.2s, 21.4s, and 21.7s respectively. It is
particularly noteworthy that the color dictionary algorithm is
only marginally slower than the other two methods: while the
slower iterated Sherman-Morrison linear solver is used in this

case, this is compensated for by having to perform FFTs on
coefficient arrays of one third of the size of those used in
the other methods. The performance of the three methods
is compared in Fig. 2. Both the joint sparsity and color
dictionary methods substantially outperform that based on
completely independent modeling of the three channels. It is
also interesting that the joint sparsity method outperforms the
color dictionary method, but it is worth noting that (i) the color
dictionary method has a substantially smaller representation,
which may be an advantage in some contexts, and (ii) given
the additional complexity of color dictionary learning, some
of the performance deficit may reflect deficiencies in the color
dictionary, rather than inherent inferiority of the model.

V. CONCLUSIONS

While not entirely straightforward, the efficient DFT domain
solution of the CBPDN problem can be extended to support
decomposition of multi-channel signals. Two different meth-
ods that model inter-channel dependencies show substantially
better performance than independent channel representation
in an inpainting-like test problem, at marginal additional
computational cost.

Implementations of the algorithms proposed here will be
included in a future release of the SPORCO library [12].
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